LogFAQs > #924331119

LurkerFAQs, Active DB, DB1, DB2, DB3, DB4, Database 5 ( 01.01.2019-12.31.2019 ), DB6, DB7, DB8, DB9, DB10, DB11, DB12, Clear
Topic List
Page List: 1
TopicIs access to clean water a human right?
BaiusGaltar
07/06/19 5:40:52 PM
#32:


https://en.m.wikipedia.org/wiki/Water_scarcity

Corporations pose a significant threat to clean and affordable water. Onondaga Lake, the most polluted lake in America, is an example of how threatening corporations can be. During the late 1800s, people began building near the lake for the beautiful scenery and natural water it provided. As the area began to develop, a sewage treatment plant was built as well as multiple industrial chemical plants.[74] Because of the lack of environmental protection controls, the industries began to dump waste and chemical byproducts into Onondaga Lake. This practice continued for years until the lake was closed to swimming in 1940 and closed to fishing in 1970.[75] It was not until 2015 when Onondaga was re-opened for swimming, but at a combined cost of $1.1 billion in public and private money.[74]

Wind and solar power such as this installation in a village in northwest Madagascar can make a difference in safe water supply.
Construction of wastewater treatment plants and reduction of groundwater overdrafting appear to be obvious solutions to the worldwide problem; however, a deeper look reveals more fundamental issues in play. Wastewater treatment is highly capital intensive, restricting access to this technology in some regions; furthermore the rapid increase in population of many countries makes this a race that is difficult to win. As if those factors are not daunting enough, one must consider the enormous costs and skill sets involved to maintain wastewater treatment plants even if they are successfully developed.

Reducing groundwater overdrafting is usually politically unpopular, and can have major economic impacts on farmers. Moreover, this strategy necessarily reduces crop output, something the world can ill-afford given the current population.

At more realistic levels, developing countries can strive to achieve primary wastewater treatment or secure septic systems, and carefully analyse wastewater outfall design to minimize impacts to drinking water and to ecosystems. Developed countries can not only share technology better, including cost-effective wastewater and water treatment systems but also in hydrological transport modeling. At the individual level, people in developed countries can look inward and reduce over consumption, which further strains worldwide water consumption. Both developed and developing countries can increase protection of ecosystems, especially wetlands and riparian zones. There measures will not only conserve biota, but also render more effective the natural water cycle flushing and transport that make water systems more healthy for humans.

A range of local, low-tech solutions are being pursued by a number of companies. These efforts center around the use of solar power to distill water at temperatures slightly beneath that at which water boils. By developing the capability to purify any available water source, local business models could be built around the new technologies, accelerating their uptake. For example, Bedouins from the town of Dahab in Egypt have installed Aqua Danial's Water Stellar, which uses a solar thermal collector measuring two square meters to distill from 40 to 60 liters per day from any local water source. This is five times more efficient than conventional stills and eliminates the need for polluting plastic PET bottles or transportation of water supply.

---
Previously, on Gattelstar Balactica...
... Copied to Clipboard!
Topic List
Page List: 1